Theoretical modelling of an infinitely wide rigid cylinder rotating over a grooved surface in hydrodynamic lubrication regime

Victor-Gabriel Marian ${ }^{12}$, Predescu Adrian ${ }^{2}$
${ }^{1}$ Austrian Center of Competence for Tribology - AC^{2} T research GmbH, Viktor Kaplan-Strasse 2, 2700 Wiener Neustadt, Austria, marian @ac2t.at
${ }^{2}$ University Politehnica of Bucharest - Splaiul Independentei 313, Bucuresti, Cod Postal 060042, Romania

Schematic representation of the model

A theoretical model which describes an infinitely wide rigid cylinder rotating over a grooved surface in hydrodynamic lubrication regime is presented in this paper. Theoretical models of an infinitely wide cylinder rotating over a flat surface are presented by Cameron [1] and Hamrock [2].

Governing Equations

The pressure is considered to be zero on the divergent zone. Using the parabolic approximation, the film thickness is calculated as follows:

$$
h=h_{0}\left(1+\frac{x^{2}}{2 R h_{0}}\right)
$$

Solving the Reynolds equation on a land surface the following relations are obtained:

$$
\begin{array}{r}
\frac{d p}{d x}=6 \eta U \frac{h-\bar{h}}{h^{3}} \quad \frac{1}{\cos ^{2} \bar{\gamma}}=\frac{\bar{h}}{h_{0}} \\
\bar{p}=\frac{\gamma}{2}+\frac{\sin 2 \gamma}{4}-\frac{1}{\cos ^{2} \bar{\gamma}}\left[\frac{3 \gamma}{8}+\frac{\sin 2 \gamma}{4}+\frac{\sin 4 \gamma}{32}\right]+C
\end{array}
$$

On the groove surface the pressure distribution is:

$$
\bar{p}_{R}=\left(\frac{h_{0}}{h_{0}+s}\right)^{3 / 2}\left(\frac{\gamma_{R}}{2}+\frac{\sin 2 \gamma_{R}}{4}-\frac{1}{\cos ^{2} \bar{\gamma}_{R}}\left[\frac{3 \gamma_{R}}{8}+\frac{\sin 2 \gamma_{R}}{4}+\frac{\sin 4 \gamma_{R}}{32}\right]\right)+C
$$

At the discontinuities the flow conservation is applied.

Load Carrying Capacity

Pressure distribution computation

The pressure distribution was also computed using a commercial CFD software. A comparison was made between the present analytical model and the numerical model.

Input data:
$R=12.7 \mathrm{~mm}, ~ U=0.127 \mathrm{~m} / \mathrm{s}, h_{0}=10 \mu \mathrm{~m}, ~ a=100 \mu \mathrm{~m}$, $b=100 \mu \mathrm{~m}, s=10 \mu \mathrm{~m}, n=20 \mathrm{rot} / \mathrm{min}, \eta=0.02$ Pas.

Notations

- groove side

- land side

D - cylinder diameter
F - load carrying capacity
\bar{F} - dimensionless load carrying capacity, $\frac{F h_{0}}{\eta U w R}$
F_{f} - friction force

- dimensionless friction force, $\frac{F_{f}}{\eta U w}$
- film thickness
- film height where the pressure gradient is zero
h_{0} - minimal film thickness
- total number of grooves and lands
- fluid pressure
- dimensionless pressure, $\frac{p h_{0}^{2}}{6 \eta U \sqrt{2 R h_{0}}}$
$R \quad$ - fluid pressure on the grooves (recesses)
R - cylinder radius
s - groove height
- cylinder speed
- cylinder width
- dimensionless x coordinate, $\frac{x}{\sqrt{2 R h_{0}}}$
- substitution angle on the grooves,
- fluid viscosity
- friction coefficient
$\bar{\mu} \quad$ - dimensionless friction coefficient, $\mu \frac{R}{h_{0}}$

Friction force

$$
\bar{F}_{f}=\sum_{i=1}^{n / 2-1} \int_{-(b / 2+a+(i-1)(a+b))}^{-(b / 2+(i-1)(a+b))}\left(-3 \frac{(h(x)+s)-\bar{h}}{(h(x)+s)^{2}}-\frac{1}{h(x)+s}\right) d x+\sum_{i=1}^{n / 2-1} \int_{-(b / 2+a+b+(i-1)(a+b))}^{-(b / 2+a+(i-1)(a+b))}\left(-3 \frac{h(x)-\bar{h}}{h(x)^{2}}-\frac{1}{h(x)}\right) d x+\int_{-b / 2}^{0}\left(-3 \frac{h(x)-\bar{h}}{h(x)^{2}}-\frac{1}{h(x)}\right) d x
$$

References

1. Cameron, A., The principles of lubrication, London, Longhmans, 1966
2. Hamrock, B.J. , Schmid, S. R., Jacobson, B. O., Fundamentals of fluid film lubrication, Marcel Dekker, 2004
